Long Term Goals and Performance Targets FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY2015 FY 2016 FY 2018 FY2020 Goals **Targets Targets Targets Targets Targets Targets Targets Targets Targets Targets** Electricity Delivery and Energy Reliability/Research and Development/High Temperature Superconductivity Demonstrate Demonstrate Demonstrate Demonstrate Demonstrate Develop prototype wire achieving 1,000,000 prototype 70,000 prototype 100,000 prototype 500,000 prototype 800,000 prototype length-critical current (A-A-m critical A-m critical A-m critical A-m critical 1,000,000 A-m m)for second generation current-length for current-length for current-length for current-length for critical currentsecond generation wire second generation second generation second generation length for second wire wire wire generation wire wire By 2014, produce high Demonstrate Demonstrate Demonstrate temperature prototype prototype prototype superconducting coil superconducting superconducting superconducting that operates in applied coils operating in coils operating in coils operating in magnetic fields up to 5 magnetic fields of 2 magnetic fields of 3 magnetic fields of 5 Tesla at 65K for HTS T at 65K T at 65K T at 65K applications By 2012, verify Fully characterize Establish Fully existing materials operating characteristics criteria and characterize and reliability of highat high voltages Institute of new dielectric capacity HTS cables for and cryogenic Electrical and materials at distribution level temperatures in AC high voltages Electronics systems and gain applications Engineers and cryogenic industry acceptability (IEEE) testing temperatures and establish design standards Develop rules based on the full forcryogenic database of characterization of dielectrics at cryogenic mechanical and distribution and dielectric electrical properties of transmission materials and existing and new voltages up to update design | cryogenic temperatures • De rul exi | ominal 161 kV rules Develop design ules based on xisting naterials | | | | | | | | |---|--|---|--|--|--|--|--|--| | Electricity Delivery and Energy Reliability/Research and Development/Visualization and Control | | | | | | | | | | and algorithms to enable an automatic, smart, real-timeswitchable network for transmission and distribution system operations that enables on a number of the security assessment tool to strengthen state estimation capabilities and chara prototype dynamic security assessment tool to strengthen state estimation capabilities and chara | elop a otype tromechanical stability alarm enabling ysis of acteristic oscillations elop a prototype contingency evaluation tool that enables analysis of the ability of the system to withstand contingencies • Develop a prototype contingency evaluation tool that enables analysis of the ability of the system to withstand contingencies • Deploy 50 additional distribution-level sensors as part of developing a smart, real-time switchable network • Develop o paditional distribution-level sensors as part of developing a smart, real-time switchable network • Deploy 50 additional distribution-level sensors as part of developing a smart, real-time switchable network • Deploy 50 additional distribution-level sensors as part of developing a smart, real-time switchable network • Deploy 50 additional distribution-level sensors as part of developing a smart, real-time switchable network • Deploy 50 additional distribution-level sensors as part of developing a smart, real-time switchable network • Deploy 50 additional distribution-level sensors as part of developing a smart, real-time switchable network • Deploy 50 of developing a smart, real-time switchable network • Deploy 50 of developing a smart, real-time switchable network • Deploy 50 of developing a smart, real-time switchable network | Develop common standards and protocols for interoperability among various systems and subsystems Deploy an automatic, smart, real-time switchable | | | | | | | ## **Long Term Goals and Performance Targets** | | FY 2009 | FY 2010 | FY 2011 | FY 2012 | FY 2013 | FY 2014 | FY2015 | FY 2016 | FY 2018 | FY2020 | |---|--|--|--|---|---|---|---|--|--|---------| | Goals | Targets | | | | sensors as part
of developing a
smart, real-time
switchable
network | | | network for
transmission
system
operations in a
major region of
the country | | | | | | By 2012, demonstrate cost-effective security solutions with minimum host impact, and make available a scalable virtual control system environment tool to energy sector stakeholders | Complete cyber security assessments of six SCADA systems in test bed environment | Complete
development of
SCADA protocol
security
authentication
technology | Demonstrate a
cyber security
evaluation tool that
enables analysis of
the impact of cyber
security
technologies on
control systems
performance | | | | | | | | | | ı | Electricity Delive | ery and Energy F | Reliability/Resear | rch and Develop | ment/Energy Sto | orage Power and | I Electronics | | | | By 2020, develop prototype battery/super-capacitor systems with three-fold increase in stored energy and super-capacitors with operating voltages two-to-three times greater than today's systems | | Increase energy
density in battery
or electrochemical
capacitor systems
by 10% | | | Increase energy
density in battery
or electrochemical
capacitor systems
by 50% | | | Increase energy
density in battery
or electrochemical
capacitor systems
by a factor of two | | | | By 2025, demonstrate a prototype solid state breaker (switch) with less than 1 millisecond response time | | | | Develop switching
systems (power
electronics) at
10,000 volts/10
amps with a
switching speed of
4 ms | | | | | Develop switching
systems (power
electronics) at
20,000 volts and
100 amps by FY18
operating
effectively at 250 °C | | | _ | Electricity Delivery and Energy Reliability/Research and Development/Renewable and Distributed Systems Integration | | | | | | | | | | | By 2015, demonstrate
20% peak load
reduction on distribution
feeders with the
implementation of
Distributed Energy and
Energy Management
Systems | Verify 5% peak
load reduction
achieved for a
constrained feeder | Verify 10% peak
load reduction
achieved for two
constrained
feeders | Verify 10% peak
load reduction
achieved for two
additional
constrained
feeders | Verify 15% peak load reduction achieved for a constrained feeder Demonstrate data acquisition and two-way communication systems by FY12, which enables load | Verify 15% peak
load reduction
achieved for two
additional
constrained
feeders | Verify 15% peak
load reduction
achieved for two
additional
constrained
feeders | Verify 20% peak
load reduction
achieved for a
constrained feeder | | | | ## **Long Term Goals and Performance Targets** | Goals | FY 2009
Targets | FY 2010
Targets | FY 2011
Targets | FY 2012
Targets | FY 2013
Targets | FY 2014
Targets | FY2015
Targets | FY 2016
Targets | FY 2018
Targets | FY2020
Targets | |---|--------------------|--|---|--|--------------------|--------------------|--|--------------------|--------------------|-------------------| | | | | | management by
both utilities and
consumers to
serve their
respective
needs | | | | | | | | By 2012, complete development of IEEE 1547 series of standards, with DG islanding applications verified and validated by 2015 | | Develop interconnection equipment reliability database and tools for renewable and distributed systems integration and interoperability Initiate development of an IEEE/ International Electrotechnical Commission (IEC) dual logo international standard based on IEEE 1547 | Complete IEEE P1547.4 - Standard Guide to islanding DG with the grid by FY11, with recommended design topologies, equipment for grid operational configurations | Reaffirm and revise American National Standards Institute (ANSI) IEEE 1547 — Interconnection of DER with the Electric Power System Develop recommendations for interconnection systems improvements and cost reduction | | | Verify and validate the application of distributed energy systems for safe, secure, and costeffective "islanding" operations while in compliance to 1547.4 | | | | | Electricity Delivery and Energy Reliability/Permitting, Siting and Analysis | Electricity Delivery and Energy Reliability/Infrastructure, Security and Energy Restoration |